Troglitazone but not Metformin Restores Insulin-Stimulated Phosphoinositide 3-Kinase Activity and Increases p110β Protein Levels in Skeletal Muscle of Type 2 Diabetic Subjects

Author:

Kim Young-Bum1,Ciaraldi Theodore P.23,Kong Alice23,Kim Dennis23,Chu Neelima23,Mohideen Pharis23,Mudaliar Sunder23,Henry Robert R.23,Kahn Barbara B.1

Affiliation:

1. Diabetes Unit, Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts

2. Veterans Affairs San Diego Healthcare System, San Diego, California

3. Department of Medicine, University of California, San Diego, La Jolla, California

Abstract

Insulin stimulation of phosphatidylinositol (PI) 3-kinase activity is defective in skeletal muscle of type 2 diabetic individuals. We studied the impact of antidiabetic therapy on this defect in type 2 diabetic subjects who failed glyburide treatment by the addition of troglitazone (600 mg/day) or metformin (2,550 mg/day) therapy for 3–4 months. Improvement in glycemic control was similar for the two groups, as indicated by changes in fasting glucose and HbA1c levels. Insulin action on whole-body glucose disposal rate (GDR) was determined before and after treatment using the hyperinsulinemic (300 mU · m−2 · min−1) euglycemic (5.0–5.5 mmol/l) clamp technique. Needle biopsies of vastus lateralis muscle were obtained before and after each 3-h insulin infusion. Troglitazone treatment resulted in a 35 ± 9% improvement in GDR (P < 0.01), which was greater than (P < 0.05) the 22 ± 13% increase (P < 0.05) after metformin treatment. Neither treatment had any effect on basal insulin receptor substrate-1 (IRS-1)-associated PI 3-kinase activity in muscle. However, insulin stimulation of PI 3-kinase activity was augmented nearly threefold after troglitazone treatment (from 67 ± 22% stimulation over basal pre-treatment to 211 ± 62% post-treatment, P < 0.05), whereas metformin had no effect. The troglitazone effect on PI 3-kinase activity was associated with a 46 ± 22% increase (P < 0.05) in the amount of the p110β catalytic subunit of PI 3-kinase. Insulin-stimulated Akt activity also increased after troglitazone treatment (from 32 ± 8 to 107 ± 32% stimulation, P < 0.05) but was unchanged after metformin therapy. Protein expression of other key insulin signaling molecules (IRS-1, the p85 subunit of PI 3-kinase, and Akt) was unaltered after either treatment. We conclude that the mechanism for the insulin-sensitizing effect of troglitazone, but not metformin, involves enhanced PI 3-kinase pathway activation in skeletal muscle of obese type 2 diabetic subjects.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3