Potentiation of Insulin Signaling in Tissues of Zucker Obese Rats After Acute and Long-Term Treatment With PPARγ Agonists

Author:

Jiang Guoqiang1,Dallas-Yang Qing1,Li Zhihua1,Szalkowski Deborah1,Liu Franklin1,Shen Xiaolan2,Wu Margaret1,Zhou Gaochao1,Doebber Thomas1,Berger Joel1,Moller David E.1,Zhang Bei B.1

Affiliation:

1. Department of Molecular Endocrinology-Diabetes, Merck Research Laboratories, Rahway, New Jersey

2. Department of Comparative Medicine, Merck Research Laboratories, Rahway, New Jersey

Abstract

Thiazolidinediones (TZDs), agonists of peroxisome proliferator-activated receptor-γ (PPARγ), improve insulin sensitivity in vivo, and the mechanism remains largely unknown. In this study, we showed that, in Zucker obese (fa/fa) rats, acute (1-day) treatment with both rosiglitazone (a TZD) and a non-TZD PPARγ agonist (nTZD) reduced plasma free fatty acid and insulin levels and, concomitantly, potentiated insulin-stimulated Akt phosphorylation at threonine 308 (Akt-pT308) in adipose and muscle tissues. A similar effect on Akt was observed in liver after a 7-day treatment. The increase in Akt-pT308 was correlated with an increase in Akt phosphorylation at serine 473 (Akt-pS473), tyrosine phosphorylation of insulin receptor β subunit and insulin receptor substrate-1, and serine phosphorylation of glycogen synthase kinase-3α/β. The agonists appeared to potentiate Akt1 phosphorylation in muscle and liver and both Akt1 and Akt2 in adipose. Finally, potentiation of insulin signaling was also observed in isolated adipose tissue ex vivo and differentiated 3T3 L1 adipocytes in vitro, but not in rat primary hepatocytes in vitro. These results suggest that 1) PPARγ agonists acutely potentiate insulin signaling in adipose and muscle tissues and such regulation may be physiologically relevant to insulin sensitization in vivo; 2) the agonists directly target adipose tissues; and 3) the metabolic and signaling effects of the agonists are mediated by structurally distinct PPARγ agonists.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3