Affiliation:
1. Physiology Laboratory, University of Toulouse School of Medicine, Toulouse, France
2. Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida
Abstract
Mesangial cells isolated from NOD mice after the onset of diabetes have undergone a stable phenotypic change. This phenotype is characterized by increased expression of IGF-I and downregulation of collagen degradation, which is associated with decreased MMP-2 activity. Here, we investigated the IGF-I signaling pathway in mesangial cells isolated from NOD mice before (nondiabetic NOD mice [ND-NOD]) and after (diabetic NOD mice [D-NOD]) the onset of diabetes. We found that the IGF-I signaling pathway in D-NOD cells was activated by autocrine IGF-I. They had phosphorylation of the IGF-I receptor β-subunit, phosphorylation of insulin receptor substrate (IRS)-1, and association of the p85 subunit (phosphatidylinositol 3-kinase [PI3K]) with the IGF-I receptor and IRS-1 in D-NOD cells in the basal state. This was also associated with increased phosphorylation of ERK2 in D-NOD mesangial cells. Inhibiting autocrine IGF-I from binding to its receptor using an IGF-I–neutralizing antibody or inhibiting IGF-I signaling pathways using a specific PI3K inhibitor or a specific mitogen-activated protein kinase/extracellular response kinase kinase inhibitor decreased phosphorylated ERKs in D-NOD cells. Importantly, this was associated with increased MMP-2 activity. The addition of exogenous IGF-I to ND-NOD activated signal transduction. Therefore, we conclude that the IGF-I signaling pathway is intact in both D-NOD and ND-NOD cells. However, the phenotypic change in D-NOD cells is associated with constitutive activation of the IGF-I signaling pathways, which may participate in the development and progression of diabetic glomerulosclerosis.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献