Combined Effects of Genetic and Environmental Factors on Insulin Resistance Associated With Reduced Fetal Growth
Author:
Jaquet Delphine1, Trégouët David A.2, Godefroy Thierry2, Nicaud Viviane2, Chevenne Didi3, Tiret Laurence2, Czernichow Paul1, Lévy-Marchal Claire1
Affiliation:
1. INSERM Unit 457; Hôpital R. Debré, Paris, France 2. INSERM Unit 525, Faculté de Médecine de la Pitié, Paris, France 3. Department of Biochemistry, Hôpital R. Debré, Paris, France
Abstract
It has been suggested that the insulin resistance (IR) associated with reduced fetal growth results from interactions between genetic factors and an unfavorable fetal environment. In addition, the adipose tissue seems to play a key role in this association. We investigated whether polymorphisms in tumor necrosis factor (TNF)-α(G−308A), β3 adrenoreceptor (ADRB3)(G+250C), and peroxisome proliferator-activated receptor (PPAR)-γ2(Pro12Ala), key molecules of the adipose tissue, might affect the IR associated with reduced fetal growth. They were genotyped in 171 subjects who were born small for gestational age (SGA) and in 233 subjects who were born appropriate for gestational age (AGA) and underwent an oral glucose tolerance test (OGTT). The SGA group showed higher serum insulin concentrations than the AGA group at fasting (P = 0.03) and after stimulation (P = 0.0007), whereas no difference in serum glucose concentrations was observed. The frequencies of the alleles of these three polymorphisms were similar in both groups. In neither group did the polymorphisms affect glucose tolerance. In the SGA group, fasting insulin-to-glucose ratios were significantly higher in the TNF/−308A (P = 0.03), the PPAR/Ala12 (P = 0.01), and the ADRB3/+250G (P = 0.02) carriers than in the noncarriers. Results were comparable for fasting insulin concentration and insulin excursion under OGTT. No such amplification was observed in the AGA group. The effects of the PPAR/ProAla12 (P = 0.005) and the ADRB3/G+250G (P = 0.009) gene polymorphisms on IR indexes were significantly potentiated by BMI in the SGA group. In conclusion, our data exemplify the interaction between intrauterine environmental and genetic factors in the development of the IR associated with reduced fetal growth. They also point to the key role of adipose tissue in this association.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference38 articles.
1. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD: Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022,1991 2. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH: Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?BMJ 308:942–945,1994 3. Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA: Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 312:406–410,1996 4. Mc Keigue PM, Lithell HO, Leon DA, et al: Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth. Diabetologia 41:1133–1138,1998 5. Léger J, Lévy-Marchal C, Bloch J, Pinet A, Chevenne D, Porquet D, Collin D, Czernichow P: Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: a regional cohort study. BMJ 315:341–347,1997
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|