cAMP-Activated Protein Kinase-Independent Potentiation of Insulin Secretion by cAMP Is Impaired in SUR1 Null Islets

Author:

Nakazaki Mitsuhiro1,Crane Ana2,Hu Min1,Seghers Victor1,Ullrich Susanne1,Aguilar-Bryan Lydia2,Bryan Joseph1

Affiliation:

1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas

2. Department of Medicine, Baylor College of Medicine, Houston, Texas

Abstract

Whereas the loss of ATP-sensitive K+ channel (KATP channel) activity in human pancreatic β-cells causes severe hypoglycemia in certain forms of hyperinsulinemic hypoglycemia, similar channel loss in sulfonylurea receptor-1 (SUR1) and Kir6.2 null mice yields a milder phenotype that is characterized by normoglycemia, unless the animals are stressed. While investigating potential compensatory mechanisms, we found that incretins, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), can increase the cAMP content of Sur1KO islets but do not potentiate glucose-stimulated insulin release. This impairment is secondary to a restriction in the ability of Sur1KO β-cells to sense cAMP correctly. Potentiation does not appear to require cAMP-activated protein kinase (PKA) because H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) and KT5720, inhibitors of PKA, do not affect stimulation by GLP-1, GIP, or exendin-4 in wild-type islets, although they block phosphorylation of cAMP-response element-binding protein. The impaired incretin response in Sur1KO islets is specific; the stimulation of insulin release by other modulators, including mastoparan and activators of protein kinase C, is conserved. The results suggest that the defect responsible for the loss of cAMP-induced potentiation of insulin secretion is PKA independent. We hypothesize that a reduced release of insulin in response to incretins may contribute to the unexpected normoglycemic phenotype of Sur1KO mice versus the pronounced hypoglycemia seen in neonates with loss of KATP channel activity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3