Exogenous Nitric Oxide and Endogenous Glucose-Stimulated β-Cell Nitric Oxide Augment Insulin Release

Author:

Smukler Simon R.1,Tang Lan1,Wheeler Michael B.12,Salapatek Anne Marie F.1

Affiliation:

1. Department of Physiology, University of Toronto, Toronto, Ontario, Canada

2. Department of Medicine, University of Toronto, Toronto, Ontario, Canada

Abstract

The role nitric oxide (NO) plays in physiological insulin secretion has been controversial. Here we present evidence that exogenous NO stimulates insulin secretion, and that endogenous NO production occurs and is involved in the regulation of insulin release. Radioimmunoassay measurement of insulin release and a dynamic assay of exocytosis using the dye FM1-43 demonstrated that three different NO donors—hydroxylamine (HA), sodium nitroprusside, and 3-morpholinosydnonimine (SIN-1)—each stimulated a marked increase in insulin secretion from INS-1 cells. Pharmacological manipulation of the guanylate cyclase/guanosine 3′,5′-cyclic monophosphate pathway indicated that this pathway was involved in mediating the effect of the intracellular NO donor, HA, which was used to simulate endogenous NO production. This effect was further characterized as involving membrane depolarization and intracellular Ca2+ ([Ca2+]i) elevation. SIN-1 application enhanced glucose-induced [Ca2+]i responses in primary β-cells and augmented insulin release from islets in a glucose-dependent manner. Real-time monitoring of NO using the NO-sensitive fluorescent dye, diaminofluorescein, was used to provide direct and dynamic imaging of NO generation within living β-cells. This showed that endogenous NO production could be stimulated by elevation of [Ca2+]i levels and by glucose in both INS-1 and primary rat β-cells. Scavenging endogenously produced NO-attenuated glucose-stimulated insulin release from INS-1 cells and rat islets. Thus, the results indicated that applied NO is able to exert an insulinotropic effect, and implicated endogenously produced NO in the physiological regulation of insulin release.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3