β-Cell Calcium-Independent Group VIA Phospholipase A2 (iPLA2β)

Author:

Bao Shunzhong1,Jin Chun1,Zhang Sheng1,Turk John1,Ma Zhongmin2,Ramanadham Sasanka1

Affiliation:

1. Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri

2. Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, New York

Abstract

Evidence that group VIA cytosolic calcium-independent phospholipase A2 (iPLA2β) participates in β-cell signal transduction includes the observations that inhibition of iPLA2β with the bromoenol lactone suicide substrate suppresses glucose-stimulated insulin secretion and that overexpression of iPLA2β amplifies insulin secretory responses in INS-1 insulinoma cells. Immunofluorescence analyses also reveal that iPLA2β accumulates in the perinuclear region of INS-1 cells stimulated with glucose and forskolin. To characterize this phenomenon further, iPLA2β was expressed as a fusion protein with enhanced green fluorescent protein (EGFP) in INS-1 cells so that movements of iPLA2β are reflected by changes in the subcellular distribution of green fluorescence. Stimulation of INS-1 cells overexpressing iPLA2β-EGFP induced greater insulin secretion and punctate accumulation of iPLA2β-EGFP fluorescence in the perinuclear region. To determine the identity of organelles with which iPLA2β might associate, colocalization of green fluorescence with fluorophores associated with specific trackers targeted to different subcellular organelles was examined. Such analyses reveal association of iPLA2β-EGFP fluorescence with the ER and Golgi compartments. Arachidonate-containing plasmenylethanolamine phospholipid species are abundant in β-cell endoplasmic reticulum (ER) and are excellent substrates for iPLA2β. Arachidonic acid produced by iPLA2β-catalyzed hydrolysis of their substrates induces release of Ca2+ from ER stores—an event thought to participate in glucose-stimulated insulin secretion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3