Aged Transgenic Mice With Increased Glucocorticoid Sensitivity in Pancreatic β-Cells Develop Diabetes

Author:

Davani Behrous12,Portwood Neil1,Bryzgalova Galina1,Reimer Martina Kvist3,Heiden Thomas4,Östenson Claes-Göran1,Okret Sam2,Ahren Bo3,Efendic Suad1,Khan Akhtar1

Affiliation:

1. Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden

2. Department of Medical Nutrition, Karolinska Institute, Huddinge, Sweden

3. Department of Medicine, Lund University, Lund, Sweden

4. Immunopathology Laboratory, Cancer Center Karolinska, Karolinska Hospital, Stockholm, Sweden

Abstract

Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in β-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the β-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12–15 months of age. Progression from impaired glucose tolerance, previously observed in the same colony at the age of 3 months, to manifest diabetes was not associated with morphological changes or increased apoptosis in the β-cells. Instead, our current results suggest that the development of diabetes is due to augmented inhibition of insulin secretion through α2-adrenergic receptors (α2-ARs). Thus, we found a significantly higher density of α2-ARs in the islets of transgenic mice compared with controls, based on binding studies with the α2-AR agonist UK 14304. Furthermore, incubation of islets with benextramine, a selective antagonist of the α2-AR, restored insulin secretion in response to glucose in isolated islets from transgenic mice, whereas it had no effect on control islets. These results indicate that the chronic enhancement of glucocorticoid signaling in pancreatic β-cells results in hyperglycemia and impaired glucose tolerance. This effect may involve signaling pathways that participate in the regulation of insulin secretion via the α2-AR.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3