Effect of dietary energy restriction on glucose production and substrate utilization in type 2 diabetes.

Author:

Christiansen M P1,Linfoot P A1,Neese R A1,Hellerstein M K1

Affiliation:

1. Department of Medicine, University of California, San Francisco, USA.

Abstract

A total of 8 obese subjects with type 2 diabetes were studied while on a eucaloric diet and after reduced energy intake (25 and then 75% of requirements for 10 days each). Weight loss was 2, 3, and 3 kg after 5, 10, and 20 days, respectively; all of the weight lost was body fat. Fasting blood glucose (FBG) levels fell from 11.9 +/- 1.4 at baseline to 8.9 +/- 1.6, 7.9 +/- 1.4, and 8.8 +/- 1.3 mmol/l at days 5, 10, and 20, respectively (P < 0.05, baseline vs. 5, 10, and 20 days). Endogenous glucose production (EGP) was 22 +/- 2, 18 +/- 2, 17 +/- 2, and 22 +/- 2 pmol x kg(-1) lean body mass (LBM) x min(-1) (P < 0.05, days 5 and 10 vs. baseline). Gluconeogenesis measured by mass isotopomer distribution analysis provided 31 +/- 4, 41 +/- 5, 40 +/- 4, and 33 +/- 4%, respectively, of the EGP (NS); absolute glycogenolytic contribution to the EGP was 15 +/- 2, 11 +/- 2, 11 +/- 2, and 15 +/- 2 pmol x kg(-1) LBM x min(-1), respectively (P < 0.001, baseline vs. days 5 and 10 and day 10 vs. day 20). The blood glucose clearance rate increased significantly at day 20 (P < 0.05). Neither lipolysis nor flux of plasma nonesterified fatty acids were altered compared with baseline. In conclusion, severe energy restriction per se independent of major changes in body composition reduces both FBG concentration and EGP in type 2 diabetes, the reduction in EGP results entirely from a reduction of glycogenolytic input into blood glucose, and the duration of reduced glycogenolysis is short-lived after relaxation of energy restriction even without weight gain, but effects on plasma glucose clearance persist and partially maintain the improvement in fasting glycemia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3