The Impact of ATP-Sensitive K+ Channel Subtype Selectivity of Insulin Secretagogues for the Coronary Vasculature and the Myocardium

Author:

Quast Ulrich1,Stephan Damian1,Bieger Susanne1,Russ Ulrich1

Affiliation:

1. From the Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Tübingen, Germany

Abstract

Insulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic β-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia. Second, KATP channels in the sarcolemma of cardiomyocytes (sarcKATP channels) are required for adaptation of the heart to stress. In addition, the opening of sarcKATP channels and of KATP channels in the inner membrane of mitochondria (mitoKATP channels) plays a central role in ischemic preconditioning. Opening of sarcKATP channels also underlies the ST-segment elevation of the electrocardiogram, the primary diagnostic tool for initiation of lysis therapy in acute myocardial infarction. Therefore, inhibition of cardiovascular KATP channels by insulin secretagogues is considered to increase cardiovascular risk. Electrophysiological experiments have shown that the secretagogues differ in their selectivity for the pancreatic over the cardiovascular KATP channels, being either highly selective (∼1,000×; short sulfonylureas such as nateglinide and mitiglinide), moderately selective (10–20×; long sulfonylureas such as glibenclamide [glyburide]), or essentially nonselective (<2×; repaglinide). New binding studies presented here give broadly similar results. In clinical studies, these differences are not yet taken into account. The hypothesis that the in vitro selectivity of the insulin secretagogues is of importance for the cardiovascular outcome of diabetic patients with coronary artery disease needs to be tested.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3