Is the Energy Homeostasis System Inherently Biased Toward Weight Gain?

Author:

Schwartz Michael W.1,Woods Stephen C.2,Seeley Randy J.2,Barsh Gregory S.3,Baskin Denis G.14,Leibel Rudolph L.5

Affiliation:

1. Department of Medicine, University of Washington, Seattle, Washington

2. Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio

3. Department of Pediatrics and Genetics, Stanford University, Palo Alto, California

4. Department of Biological Structure, University of Washington, Seattle, Washington

5. Department of Pediatrics, Columbia University, New York, New York

Abstract

We describe a model of energy homeostasis to better understand neuronal pathways that control energy balance and their regulation by hormonal signals such as insulin and leptin. Catabolic neuronal pathways are those that both reduce food intake and increase energy expenditure (e.g., melanocortin neurons in the hypothalamic arcuate nucleus) and are stimulated by input from insulin and leptin. We propose that in the basal state, catabolic effectors are activated in response to physiological concentrations of leptin and insulin, and that this activation is essential to prevent excessive weight gain. In contrast, anabolic pathways (e.g., neurons containing neuropeptide Y) are those that stimulate food intake and decrease energy expenditure and are strongly inhibited by these same basal concentrations of insulin and leptin. In the basal state, therefore, catabolic effector pathways are activated while anabolic effector pathways are largely inhibited. The response to weight loss includes both activation of anabolic and inhibition of catabolic pathways and is, thus, inherently more vigorous than the response to weight gain (stimulation of already-activated catabolic pathways and inhibition of already-suppressed anabolic pathways). Teleological, molecular, physiological, and clinical aspects of this hypothesis are presented, along with a discussion of currently available supporting evidence.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3