Affiliation:
1. From the Robert H. Williams Laboratory, Department of Medicine, University of Washington, Seattle, Washington
Abstract
γ-Aminobutyric acid (GABA) is stored in microvesicles in pancreatic islet cells. Because GAD65 and GAD67, which catalyze the formation of GABA, are cytoplasmic, the existence of an islet vesicular GABA transporter has been postulated. Here, we test the hypothesis that the putative transporter is the vesicular inhibitory amino acid transporter (VIAAT), a neuronal transmembrane transporter of GABA and glycine. We sequenced the human VIAAT gene and determined that the human and rat proteins share over 98% sequence identity. In vitro expression of VIAAT and immunoblotting of brain and islet lysates revealed two forms of the protein: an ∼52-kDa and an ∼57-kDa form. By immunoblotting and immunohistochemistry, we detected VIAAT in rat but not human islets. Immunohistochemical staining showed that in rat islets, the distribution of VIAAT expression parallels that of GAD67, with increased expression in the mantle. GABA, too, was found to be present in islet non-β-cells. We conclude that VIAAT is expressed in rat islets and is more abundant in the mantle and that expression in human islets is very low or nil. The rat islet mantle differs from rat and human β-cells in that it contains only GAD67 and relatively increased levels of VIAAT. Cells that express only GAD67 may require higher levels of VIAAT expression.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference43 articles.
1. Mally MI, Cirulli V, Otonkoski T, Soto G, Hayek A: Ontogeny and tissue distribution of human GAD expression. Diabetes 45:496–501,1996
2. Lernmark A: Glutamic acid decarboxylase: gene to antigen to disease. J Intern Med 240:259–277,1996
3. Chessler SD, Lernmark A: Alternative splicing of GAD67 results in the synthesis of a third form of glutamic-acid decarboxylase in human islets and other non-neural tissues. J Biol Chem 275:5188–5192,2000
4. Chessler SD, Lernmark A: The role of glutamic acid decarboxylase and GABA in the pancreas and diabetes. In GABA in the Nervous System: The View at Fifty Years. Martin DL, Olson RW, Eds. Philadelphia, Lippincott Williams & Wilkins,2000, p.471–484
5. Shi Y, Kanaani J, Menard-Rose V, Ma YH, Chang PY, Hanahan D, Tobin A, Grodsky G, Baekkeskov S: Increased expression of GAD65 and GABA in pancreatic beta-cells impairs first-phase insulin secretion. Am J Physiol Endocrinol Metab 279:E684–E694,2000
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献