Insulin Generates Free Radicals by an NAD(P)H, Phosphatidylinositol 3′-Kinase-Dependent Mechanism in Human Skin Fibroblasts Ex Vivo

Author:

Ceolotto Giulio1,Bevilacqua Michela1,Papparella Italia1,Baritono Elisabetta1,Franco Lorenzo2,Corvaja Carlo2,Mazzoni Martina2,Semplicini Andrea1,Avogaro Angelo1

Affiliation:

1. Department of Clinical and Experimental Medicine, University of Padova Medical School, Padova, Italy

2. Department of Physical Chemistry, University of Padova, Padova, Italy

Abstract

Oxidative stress may be involved in the development of vascular complications associated with diabetes; however, the molecular mechanism responsible for increased production of free radicals in diabetes remains uncertain. Therefore, we examined whether acute hyperinsulinemia increases the production of free radicals and whether this condition affects proliferative extracellular signal-regulated kinase (ERK-1 and -2) signaling in human fibroblasts in vitro. Insulin treatment significantly increased intracellular superoxide anion (O2−) production, an effect completely abolished by Tiron, a cell-permeable superoxide dismutase (SOD) mimetic and by polyethylene glycol (PEG)-SOD, but not by PEG catalase. Furthermore, insulin-induced O2− production was attenuated by the NAD(P)H inhibitor apocynin, but not by rotenone or oxypurinol. Inhibition of the phosphatidylinositol 3′-kinase (PI 3′-kinase) pathway with LY294002 blocked insulin-stimulated O2− production, suggesting a direct involvement of PI 3′-kinase in the activation of NAD(P)H oxidase. The insulin-induced free radical production led to membranous translocation of p47phox and markedly enhanced ERK-1 and -2 activation in human fibroblasts. In conclusion, these findings provided direct evidence that elevated insulin levels generate O2− by an NAD(P)H-dependent mechanism that involves the activation of PI 3′-kinase and stimulates ERK-1- and ERK-2-dependent pathways. This effect of insulin may contribute to the pathogenesis and progression of cardiovascular disease in the insulin resistance syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3