Affiliation:
1. From the Department of Endocrinology, Odense University Hospital, Odense, Denmark
Abstract
The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase (GS) activity; the content of glucose-6-phosphate, glucose, and glycogen; and the glucose transport in satellite cell cultures established from diabetic and control subjects. Myotubes were precultured in increasing insulin concentrations for 4 days and subsequently stimulated acutely by insulin. The present study shows that the basal glucose uptake as well as insulin-stimulated GS activity is reduced in satellite cell cultures established from patients with type 2 diabetes. Moreover, increasing insulin concentrations could compensate for the reduced GS activity to a certain extent, whereas chronic supraphysiological insulin concentrations induced insulin resistance in GS and glucose transport activity. Our data suggest that insulin resistance in patients with type 2 diabetes comprises at least two important defects under physiological insulin concentrations: a reduced glucose transport under basal conditions and a reduced GS activity under acute insulin stimulation, implicating a reduced glucose uptake in the fasting state and a diminished insulin-mediated storage of glucose as glycogen after a meal.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献