Differential Effects of Rosiglitazone on Skeletal Muscle and Liver Insulin Resistance in A-ZIP/F-1 Fatless Mice

Author:

Kim Jason K.1,Fillmore Jonathan J.1,Gavrilova Oksana2,Chao Lily2,Higashimori Takamasa1,Choi Hyejeong1,Kim Hyo-Jeong1,Yu Chunli1,Chen Yan3,Qu Xianqin4,Haluzik Martin2,Reitman Marc L.2,Shulman Gerald I.135

Affiliation:

1. Department of Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut

2. Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

3. Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut

4. Department of Health Sciences, University of Technology, Sydney, New South Wales, Australia

5. Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut

Abstract

To determine the role of adipocytes and the tissue-specific nature in the insulin sensitizing action of rosiglitazone, we examined the effects of 3 weeks of rosiglitazone treatment on insulin signaling and action during hyperinsulinemic-euglycemic clamps in awake A-ZIP/F-1 (fatless), fat-transplanted fatless, and wild-type littermate mice. We found that 53 and 66% decreases in insulin-stimulated glucose uptake and insulin receptor substrate (IRS)-1–associated phosphatidylinositol (PI) 3-kinase activity in skeletal muscle of fatless mice were normalized after rosiglitazone treatment. These effects of rosiglitazone treatment were associated with 50% decreases in triglyceride and fatty acyl-CoA contents in the skeletal muscle of rosiglitazone-treated fatless mice. In contrast, rosiglitazone treatment exacerbated hepatic insulin resistance in the fatless mice and did not affect already reduced IRS-2–associated PI 3-kinase activity in liver. The worsening of insulin action in liver was associated with 30% increases in triglyceride and fatty acyl-CoA contents in the liver of rosiglitazone-treated fatless mice. In conclusion, these data support the hypothesis that rosiglitazone treatment enhanced insulin action in skeletal muscle mostly by its ability to repartition fat away from skeletal muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3