Analysis of Insulin-Producing Cells During In Vitro Differentiation From Feeder-Free Embryonic Stem Cells

Author:

Moritoh Yusuke1,Yamato Eiji1,Yasui Yumiko1,Miyazaki Satsuki1,Miyazaki Jun-ichi1

Affiliation:

1. From the Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Japan

Abstract

Embryonic stem (ES) cells can differentiate into many cell types and are expected to be useful for tissue engineering. Recent reports have shown that ES cells can differentiate into insulin-producing cells in response to the transient expression of the pdx-1 gene, after the removal of feeder cells. To investigate the lineage of insulin-producing cells and their in vitro differentiation, we introduced the βgeo gene, encoding a β-galactosidase-neomycin phosphotransferase fusion protein under the control of the mouse insulin 2 promoter, into ES cells that had been adapted to feeder-free culture, and analyzed insulin gene expression during their in vitro differentiation. We also examined the expression of transcription factors that are related to the differentiation of the pancreas. X-gal staining analysis revealed β-galactosidase-positive cells on the surface and in the center of the embryoid body that proliferated during differentiation. Glucose-responsive insulin-producing cells, derived from our feeder-free ES cells, expressed insulin 2, pdx-1, Pax4, and Isl1 and also the glucagon, somatostatin, and PP genes. Moreover, the genes encoding p48, amylase, and carboxypeptidase A were also expressed. These results suggest that ES cells can differentiate not only into endocrine cells but also into exocrine cells of the pancreas, without the initiation of pdx-1 expression.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3