Atypical protein kinase C isozyme zeta mediates carbachol-stimulated insulin secretion in RINm5F cells.

Author:

Tang S H1,Sharp G W1

Affiliation:

1. Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.

Abstract

Carbachol-stimulated insulin release in the RINm5F cell is associated with elevation of the cytosolic Ca2+ concentration ([Ca2+]i) through mobilization of Ca2+ from thapsigargin-sensitive intracellular stores and with the generation of diacylglycerol (DAG). Thus carbachol activates phospholipase C, and this was thought to be the means by which it stimulates insulin secretion. However, when the elevation of [Ca2+]i was blocked by thapsigargin, the effect of carbachol to stimulate insulin release was unchanged. Thus the effect of carbachol to increase [Ca2+]i was dissociated from the stimulation of release. When the role of protein kinase C (PKC) was examined, carbachol-stimulated insulin release was found to be unaffected by phorbol ester-induced downregulation of PKC, using 12-O-tetradecanoylphorbol-13-acetate (TPA), and by the PKC inhibitors staurosporine, bisindolylmaleimide, and 1-O-hexadecyl-2-O-methylglycerol (AMG-C16). These treatments abolished the stimulation of release by TPA. Thus the carbachol activation of PKC appeared also to be dissociated from the stimulation of insulin release. However, when the activation of several different PKC isozymes was studied, an atypical PKC isozyme, zeta, was found to be translocated by carbachol. By Western blotting analysis, carbachol selectively translocated the conventional PKC isozymes alpha and beta (the activation of which is dependent on Ca2+ and DAG) from the cytosol to the membrane. Carbachol also translocated the atypical PKC isozyme zeta, which is insensitive to Ca2+, DAG, and phorbol esters. The PKC inhibitors staurosporine, bisindolylmaleimide, and AMG-C16 blocked the stimulated translocation of PKC-alpha and -beta, but not that of PKC-zeta. Prolonged treatment of the cells with TPA downregulated PKC-alpha and -beta, but not PKC-zeta. Under all these conditions, carbachol-stimulated insulin release was unaffected. However, a pseudosubstrate peptide inhibitor specific for PKC-zeta inhibited the translocation of PKC-zeta and 70% of the carbachol-stimulated insulin secretion. The data indicate that carbachol-stimulated insulin release in RINm5F cells is mediated to a large degree by the activation of the atypical PKC isozyme zeta.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3