A Susceptibility Allele From a Non-Diabetes-Prone Mouse Strain Accelerates Diabetes in NOD Congenic Mice

Author:

Brodnicki Thomas C.1,Quirk Fiona1,Morahan Grant1

Affiliation:

1. From the Genetics and Bioinformatics Division, the Walter & Eliza Hall Institute of Medical Research, Melbourne, Australia

Abstract

The nonobese diabetic (NOD) mouse is genetically predisposed for the spontaneous development of type 1 diabetes. Linkage analyses have identified at least 19 susceptibility loci (Idd1–Idd19) that contribute to disease pathogenesis in which lymphocytes mediate the specific destruction of insulin-producing β-cells. Interestingly, nondiabetic mouse strains have been shown to confer susceptibility alleles to affected progeny in NOD outcrosses for some of the Idd loci. In particular, we noted that diabetic backcross progeny, derived from NOD and C57BL/6 (B6) mouse strains, demonstrated increased heterozygousity for an interval encompassing Idd14 on chromosome 13. This result suggested that B6 mice harbor a more diabetogenic allele(s) than NOD mice for this locus. To confirm this observation, a NOD congenic mouse strain, containing a B6-derived interval covering the majority of chromosome 13, was generated. Adding to the combination of already potent susceptibility alleles elsewhere in the NOD genome, the chromosome 13 B6-derived interval was able to increase the overall risk of developing type 1 diabetes, which resulted in an earlier onset and increased incidence of type 1 diabetes in congenic mice as compared with NOD mice. Furthermore, this B6-derived interval, in combination with the NOD genetic background, was able to overcome environmental conditions that typically suppressed type 1 diabetes in the NOD mouse strain.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3