Signaling Pathways Involved in Human Vascular Smooth Muscle Cell Proliferation and Matrix Metalloproteinase-2 Expression Induced by Leptin

Author:

Li Ling1,Mamputu Jean-Claude1,Wiernsperger Nicolas2,Renier Geneviève1

Affiliation:

1. CHUM Research Centre, Vascular Immunology Laboratory, Department of Medicine, Notre-Dame Hospital, University of Montreal, Quebec, Canada

2. INSERM U585, INSA Lyon, Batiment L. Pasteur, Villeurbanne, France

Abstract

Accumulating evidence suggests that high concentrations of leptin observed in obesity and diabetes may contribute to their adverse effects on cardiovascular health. Metformin monotherapy is associated with reduced macrovascular complications in overweight patients with type 2 diabetes. It is uncertain whether such improvement in the cardiovascular outcome is related to specific vasculoprotective effects of this drug. In the present study, we determined the effect of leptin on human aortic smooth muscle cell (HASMC) proliferation and matrix metalloproteinase (MMP)-2 expression, the signaling pathways mediating these effects, and the modulatory effect of metformin on these parameters. Incubation of HASMCs with leptin enhanced the proliferation and MMP-2 expression in these cells and increased the generation of intracellular reactive oxygen species (ROS). These effects were abolished by vitamin E. Inhibition of NAD(P)H oxidase and protein kinase C (PKC) suppressed the effect of leptin on ROS production. In HASMCs, leptin induced PKC, extracellular signal–regulated kinase (ERK)1/2, and nuclear factor-κB (NF-κB) activation and inhibition of these signaling pathways abrogated HASMC proliferation and MMP-2 expression induced by this hormone. Treatment of HASMCs with metformin decreased leptin-induced ROS production and activation of PKC, ERK1/2, and NF-κB. Metformin also inhibited the effect of leptin on HASMC proliferation and MMP-2 expression. Overall, these results demonstrate that leptin induced HASMC proliferation and MMP-2 expression through a PKC-dependent activation of NAD(P)H oxidase with subsequent activation of the ERK1/2/NF-κB pathways and that therapeutic metformin concentrations effectively inhibit these biological effects. These results suggest a new mechanism by which metformin may improve cardiovascular outcome in patients with diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3