Effects of Glucose and Amino Acids on Free ADP in βHC9 Insulin-Secreting Cells

Author:

Ronner Peter1,Naumann C. Maik1,Friel Edward1

Affiliation:

1. From the Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University College of Medicine, Philadelphia, Pennsylvania.

Abstract

Stimulation of insulin release by glucose is widely thought to be coupled to a decrease in the activity of ATP-sensitive K+ channels(KATP channels) that is caused by a decreased concentration of free ADP. To date, most other investigators have reported only on total cellular ADP concentrations, even though only a small fraction of all ADP is free and only the free ADP affects KATP channels. We tested the hypothesis that amino acids elicit insulin release via a decrease in the activity of KATP channels owing to a decrease in the level of free ADP. We estimated the concentration of free ADP in βHC9 hyperplastic insulin-secreting cells based on the cell diameter and on luminometric measurements of ATP, phosphocreatine, and total creatine. The concentration of free ADP fell exponentially as the concentration of glucose increased. A physiological mixture of amino acids greatly stimulated insulin release at 0-30 mmol/l glucose but affected the concentration of free ADP only to a minor degree and significantly so only at ≤2 mmol/l glucose. In the presence of 2-deoxyglucose and NaN3, amino acids were unable to stimulate insulin release. When KATP channels were held open with diazoxide(and the plasma membrane partially depolarized with high extracellular KCl),amino acids still stimulated insulin release. We conclude that amino acid—induced insulin release depends on two components: a yet-unknown amino acid sensor and KATP channels, which serve to attenuate hormone release when cellular energy stores are low. We propose that glucose-induced insulin release may be regulated similarly by two components:glucokinase and KATP channels.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3