Role of Caveolin-1 in the Modulation of Lipolysis and Lipid Droplet Formation

Author:

Cohen Alex W.12,Razani Babak12,Schubert William12,Williams Terence M.12,Wang Xiao Bo12,Iyengar Puneeth3,Brasaemle Dawn L.4,Scherer Philipp E.23,Lisanti Michael P.12

Affiliation:

1. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York

2. Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York

3. Departments of Cell Biology and Medicine, Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York

4. Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey

Abstract

Recently, it was shown that caveolin-1 can be redirected from the cell surface to intracellular lipid droplets in a variety of cell types. Here, we directly address the role of caveolin-1 in lipid droplet formation and breakdown, showing that caveolin-1 null mice exhibit markedly attenuated lipolytic activity. Mechanistically, although the activity of protein kinase A (PKA) was greatly increased in caveolin-1 null adipocytes, the phosphorylation of perilipin was dramatically reduced, indicating that caveolin-1 may facilitate the PKA-mediated phosphorylation of perilipin. In support of this hypothesis, coimmunoprecipitation experiments revealed that treatment with a β3-adrenergic receptor agonist resulted in ligand-induced complex formation between perilipin, caveolin-1, and the catalytic subunit of PKA in wild-type but not in caveolin-1 null fat pads. We also show that caveolin-1 expression is important for efficient lipid droplet formation because caveolin-1 null embryonic fibroblasts stably transfected with perilipin accumulated ∼4.5-fold less lipid than perilipin-transfected wild-type cells. Finally, high-pressure freeze-substitution electron microscopy of adipose tissue revealed dramatic perturbations in the architecture of the “lipid droplet cortex” (the interface between the lipid droplet surface and the cytoplasm) in caveolin-1 null perigonadal adipocytes. Taken together, our data provide the first molecular genetic evidence that caveolin-1 plays a critical functional and structural role in the modulation of both lipid droplet biogenesis and metabolism in vivo.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 272 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3