Preferential Channeling of Energy Fuels Toward Fat Rather Than Muscle During High Free Fatty Acid Availability in Rats

Author:

Fabris Roberto1,Nisoli Enzo2,Lombardi Anna Maria1,Tonello Cristina2,Serra Roberto1,Granzotto Marnie1,Cusin Isabelle3,Rohner-Jeanrenaud Françoise3,Federspil Giovanni1,Carruba Michele O.2,Vettor Roberto1

Affiliation:

1. Department of Medical and Surgical Sciences, Endocrine-Metabolic Laboratory, University of Padova, Padova

2. Department of Preclinical Sciences, Center for Study and Research on Obesity, L. Sacco Hospital, University of Milan, Milan, Italy

3. Department of Medicine, Division of Endocrinology and Diabetology, Geneva University Hospital, University of Geneva, Geneva, Switzerland

Abstract

The preferential channeling of different fuels to fat and changes in the transcription profile of adipose tissue and skeletal muscle are poorly understood processes involved in the pathogenesis of obesity and insulin resistance. Carbohydrate and lipid metabolism may play relevant roles in this context. Freely moving lean Zucker rats received 3- and 24-h infusions of Intralipid (Pharmacia and Upjohn, Milan, Italy) plus heparin, or saline plus heparin, to evaluate how an increase in free fatty acids (nonesterified fatty acid [NEFA]) modulates fat tissue and skeletal muscle gene expression and thus influences fuel partitioning. Glucose uptake was determined in various tissues at the end of the infusion period by means of the 2-deoxy-[1-3H]-d-glucose technique after a euglycemic-hyperinsulinemic clamp: high NEFA levels markedly decreased insulin-mediated glucose uptake in red fiber–type muscles but enhanced glucose utilization in visceral fat. Using reverse transcriptase–polymerase chain reaction and Northern blotting analyses, the mRNA expression of fatty acid translocase (FAT)/CD36, GLUT4, tumor necrosis factor (TNF)-α, peroxisome proliferator–activated receptor (PPAR)-γ, leptin, uncoupling protein (UCP)-2, and UCP-3 was investigated in different fat depots and skeletal muscles before and after the study infusions. GLUT4 mRNA levels significantly decreased (by ∼25%) in red fiber–type muscle (soleus) and increased (by ∼45%) in visceral adipose tissue. Furthermore, there were marked increases in FAT/CD36, TNF-α, PPAR-γ, leptin, UCP2, and UCP3 mRNA levels in the visceral fat and muscle of the treated animals in comparison with those measured in the saline-treated animals. These data suggest that the in vivo gene expression of FAT/CD36, GLUT4, TNF-α, PPAR-γ, leptin, UCP2, and UCP3 in visceral fat and red fiber–type muscle are differently regulated by circulating lipids and that selective insulin resistance seems to favor, at least in part, a prevention of fat accumulation in tissues not primarily destined for fat storage, thus contributing to increased adiposity and the development of a prediabetic syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3