Dysregulation of the insulin/IGF binding protein-1 axis in transgenic mice is associated with hyperinsulinemia and glucose intolerance.

Author:

Crossey P A1,Jones J S1,Miell J P1

Affiliation:

1. Department of Diabetes, Endocrinology and Internal Medicine, Guy's, King's and St Thomas' School of Medicine, London, UK. paul.crossey@kcl.ac.uk

Abstract

The insulin/IGF binding protein-1 (IGFBP-1) axis is important in coordinating insulin- and IGF-mediated regulation of glucose metabolism and glycemia. Dysregulation of the axis may play a role in the pathophysiology of disorders of insulin deficiency and resistance. We have investigated this hypothesis by generating transgenic mice that overexpress hIGFBP-1. To study the axis in its true physiological context, we used a human (h) IGFBP-1 cosmid clone so that transgene expression is responsive to normal hormonal stimuli. hIGFBP-1 mRNA is expressed in a tissue-specific fashion, and measurement of serum protein levels by specific immunoassay indicates normal physiological regulation in response to fasting/feeding and appropriate post-translational modification as indicated by the detection of phosphorylated and nonphosphorylated isoforms of the protein. The hypoglycemic response to exogenous IGF-I is attenuated in transgenic mice. Transgenic mice exhibit an enhanced insulin secretory response to a glucose challenge, although basal and stimulated blood glucose levels are similar to controls. There is a sexual dimorphism in phenotypic expression: male transgenic mice had higher stimulated glucose and insulin levels than did females. Transgenic mice exhibit fasting hyperglycemia and hyperinsulinemia and glucose intolerance in later life, indicating an age-related decline in glucocompetence. These findings demonstrate the importance of the normal inverse relationship between serum insulin and IGFBP-1 levels in glucoregulation and that sustained dysregulation of the insulin/IGF-I/IGFBP-1 axis is associated with impaired glucose tolerance and abnormalities of insulin action.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3