Interactions Between Hyperglycemia and Hypoxia

Author:

Nyengaard Jens R.1,Ido Yassuo2,Kilo Charles3,Williamson Joseph R.4

Affiliation:

1. Stereological Research and Electron Microscopical Laboratory, University of Aarhus, Aarhus C, Denmark

2. Departments of Medicine and Physiology, Diabetes & Metabolism Unit, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts

3. Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri

4. Department of Pathology, Washington University School of Medicine, St. Louis, Missouri

Abstract

The primary aim of these experiments was to assess in vitro effects of hyperglycemia (30 mmol/l glucose) and hypoxia (Po2 = 36 torr) of 2-h duration, separately and in combination, on cytosolic and mitochondrial free NADH (NADHc and NADHm, respectively) in retinas from normal rats. NADH is the major carrier of electrons and protons that fuel ATP synthesis and several metabolic pathways linked to diabetic complications. Hyperglycemia and hypoxia increase free NADHc by different mechanisms that are additive. Hyperglycemia increases transfer of electrons and protons from sorbitol to NAD+c, reducing it to NADHc, but does not increase NADHm. Hypoxia increases NADHm by inhibiting its oxidation. Electrons and protons accumulating in NADHm restrain transfer of electrons and protons from NADHc to NAD+m via the malate-aspartate electron shuttle. Hyperglycemia and hypoxia also increase glycolysis by different mechanisms that are additive, and hyperglycemia increases ATP levels in hypoxic and in aerobic retinas. The additive effects of hyperglycemia and hypoxia on accumulation of electrons and protons in a common pool of free NADHc confirm the test hypothesis and the potential of a combination of these two risk factors to accelerate the onset and progression of diabetic retinopathy (and other complications of diabetes) by augmenting metabolic pathways fueled by free NADHc.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3