Permanent Neonatal Diabetes Caused by Glucokinase Deficiency

Author:

Njølstad Pål R.12,Sagen Jørn V.1,Bjørkhaug Lise2,Odili Stella3,Shehadeh Naim4,Bakry Doua4,Sarici S. Umit5,Alpay Faruk5,Molnes Janne1,Molven Anders26,Søvik Oddmund1,Matschinsky Franz M.3

Affiliation:

1. Department of Pediatrics, Haukeland University Hospital, University of Bergen, Norway

2. Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, Norway

3. Department of Biochemistry and Biophysics, and Diabetes Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

4. Department of Pediatrics, Rambam Medical Center, Haifa, Israel

5. Division of Newborn Medicine, Department of Pediatrics, Gülhane Military Medical Academy, Ankara, Turkey

6. Department of Pathology, the Gade Institute, Haukeland University Hospital, University of Bergen, Norway

Abstract

Neonatal diabetes can be either permanent or transient. We have recently shown that permanent neonatal diabetes can result from complete deficiency of glucokinase activity. Here we report three new cases of glucokinase-related permanent neonatal diabetes. The probands had intrauterine growth retardation (birth weight <1,900 g) and insulin-treated diabetes from birth (diagnosis within the first week of life). One of the subjects was homozygous for the missense mutation Ala378Val (A378V), which is an inactivating mutation with an activity index of only 0.2% of wild-type glucokinase activity. The second subject was homozygous for a mutation in the splice donor site of exon 8 (intervening sequence 8 [IVS8] + 2T→G), which is predicted to lead to the synthesis of an inactive protein. The third subject (second cousin of subject 2) was a compound heterozygote with one allele having the splice-site mutation IVS8 + 2T→G and the other the missense mutation Gly264Ser (G264S), a mutation with an activity index of 86% of normal activity. The five subjects with permanent neonatal diabetes due to glucokinase deficiency identified to date are characterized by intrauterine growth retardation, permanent insulin-requiring diabetes from the first day of life, and hyperglycemia in both parents. Autosomal recessive inheritance and enzyme deficiency are features typical for an inborn error of metabolism, which occurred in the glucose-insulin signaling pathway in these subjects.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3