Discovery of Gene Networks Regulating Cytokine-Induced Dysfunction and Apoptosis in Insulin-Producing INS-1 Cells

Author:

Kutlu Burak1,Cardozo Alessandra K.1,Darville Martine I.1,Kruhøffer Mogens2,Magnusson Nils2,Ørntoft Torben2,Eizirik Décio L.1

Affiliation:

1. Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium

2. Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Denmark

Abstract

Locally released cytokines contribute to β-cell dysfunction and apoptosis in type 1 diabetes. In vitro exposure of insulin-producing INS-1E cells to the cytokines interleukin (IL)-1β + interferon (IFN)-γ leads to a significant increase in apoptosis. To characterize the genetic networks implicated in β-cell dysfunction and apoptosis and its dependence on nitric oxide (NO) production, we performed a time-course microarray analysis of cytokine-induced genes in insulin-producing INS-1E cells. INS-1E cells were exposed in duplicate to IL-1β + IFN-γ for six different time points (1, 2, 4, 8, 12, and 24 h) with or without the inducible NO synthase (iNOS) blocker NG-monomethyl-l-arginine (NMA). The microarray analysis identified 698 genes as cytokine modified (≥2.5-fold change compared with control) in at least one time point. Based on their temporal pattern of variation, the cytokine-regulated genes were classified into 15 clusters by the k-means method. These genes were further classified into 14 different groups according to their putative function. Changes in the expression of genes related to metabolism, signal transduction, and transcription factors at all time points studied indicate β-cell attempts to adapt to the effects of continuous cytokine exposure. Notably, several apoptosis-related genes were modified at early time points (2–4 h) preceding iNOS expression. On the other hand, 46% of the genes modified by cytokines after 8–24 h were NO dependent, indicating the important role of this radical for the late effects of cytokines. The present results increase by more than twofold the number of known cytokine-modified genes in insulin-producing cells and yield comprehensive information on the role of NO for these modifications in gene expression. These data provide novel and detailed insights into the gene networks activated in β-cells facing a prolonged immune assault.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3