Coordinated Upregulation of Oxidative Pathways and Downregulation of Lipid Biosynthesis Underlie Obesity Resistance in Perilipin Knockout Mice

Author:

Castro-Chavez Fernando12,Yechoor Vijay K.1,Saha Pradip K.1,Martinez-Botas Javier1,Wooten Eric C.1,Sharma Saumya3,O’Connell Peter1,Taegtmeyer Heinrich3,Chan Lawrence1

Affiliation:

1. Section of Diabetes, Endocrinology and Metabolism, Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas

2. Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico

3. Division of Cardiology, University of Texas Houston Medical School, Houston, Texas

Abstract

Obesity is a major risk factor for diabetes and heart disease. We previously reported that the inactivation of the gene for perilipin (plin), an adipocyte lipid droplet surface protein, produced lean and obesity-resistant mice. To dissect the underlying mechanisms involved, we used oligonucleotide microarrays to analyze the gene-expression profile of white adipose tissue (WAT), liver, heart, skeletal muscle, and kidney of plin−/− and plin+/+ mice. As compared with wild-type littermates, the WAT of plin−/− mice had 270 and 543 transcripts that were significantly up- or downregulated. There was a coordinated upregulation of genes involved in β-oxidation, the Krebs cycle, and the electron transport chain concomitant with a downregulation of genes involved in lipid biosynthesis. There was also a significant downregulation of the stearoyl CoA desaturase-1 gene, which has been associated with obesity resistance. Thus, in response to the constitutive activation of lipolysis associated with absence of perilipin, WAT activated pathways to rid itself of the products of lipolysis and activated pathways of energy expenditure that contribute to the observed obesity resistance. The biochemical pathways involved in obesity resistance in plin−/− mice identified in this study may represent potential targets for the treatment of obesity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3