Markedly Decreased Oxygen Tension in Transplanted Rat Pancreatic Islets Irrespective of the Implantation Site

Author:

Carlsson Per-Ola1,Palm Fredrik2,Andersson Arne1,Liss Per3

Affiliation:

1. Departments of Medical Cell Biology

2. Physiology, and

3. Diagnostic Radiology, Uppsala University, Uppsala, Sweden

Abstract

In this study, we syngeneically transplanted islets to three different implantation sites of diabetic and nondiabetic rats, then 9–12 weeks later we measured the blood perfusion and compared the tissue partial pressure of oxygen (Po2) levels of these transplanted islets to endogenous islets. Modified Clark microelectrodes (outer tip diameter 2–6 μm) were used for the oxygen tension measurements, and islet transplant blood perfusion was recorded by laser-Doppler flowmetry (probe diameter 0.45 mm). The islet graft blood perfusion was similar in all islet grafts, irrespective of the implantation site. In comparison, the three implantation organs (the kidney cortex, liver, and spleen) differed markedly in their blood perfusion. There were no differences in islet graft blood perfusion between diabetic and nondiabetic recipients. Within native pancreatic islets, the mean Po2 was ∼40 mmHg; however, all transplanted islets had a mean Po2 of ∼5 mmHg. The oxygen tension of the grafts did not differ among the implantation sites. In diabetic recipients, an even lower Po2 level was recorded in the islet transplants. We conclude that the choice of implantation site seems less important than intrinsic properties of the transplanted islets with regard to the degree of revascularization and concomitant blood perfusion. Furthermore, the mean Po2 level in islets implanted to the kidney, liver, and spleen was markedly decreased at all three implantation sites when compared with native islets, especially in diabetic recipients. These results are suggestive of an insufficient oxygenization of revascularized transplanted islets, irrespective of the implantation site.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3