Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes.

Author:

Seewaldt S1,Thomas H E1,Ejrnaes M1,Christen U1,Wolfe T1,Rodrigo E1,Coon B1,Michelsen B1,Kay T W1,von Herrath M G1

Affiliation:

1. Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

Autoimmune diabetes is caused by selective loss of insulin-producing pancreatic beta-cells. The main factors directly implicated in beta-cell death are autoreactive, cytotoxic (islet-antigen specific) T-lymphocytes (CTL), and inflammatory cytokines. In this study, we have used an antigen-specific model of virally induced autoimmune diabetes to demonstrate that even high numbers of autoreactive CTL are unable to lyse beta-cells by perforin unless major histocompatibility complex class I is upregulated on islets. This requires the presence of inflammatory cytokines induced by viral infection of the exocrine pancreas but not of the beta-cells. Unexpectedly, we found that the resulting perforin-mediated killing of beta-cells by autoreactive CTL is not sufficient to lead to clinically overt diabetes in vivo, and it is not an absolute prerequisite for the development of insulitis, as shown by studies in perforin-deficient transgenic mice. In turn, destruction of beta-cells also requires a direct effect of gamma-interferon (IFN-gamma), which is likely to be in synergy with other cytokines, as shown in double transgenic mice that express a mutated IFN-gamma receptor on their beta-cells in addition to the viral (target) antigen and do not develop diabetes. Thus, destruction of most beta-cells occurs as cytokine-mediated death and requires IFN-gama in addition to perforin. Understanding these kinetics could be of high conceptual importance for the design of suitable interventions in prediabetic individuals at risk to develop type 1 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3