Poly(ADP-ribose) polymerase facilitates the repair of N-methylpurines in mitochondrial DNA.

Author:

Druzhyna N1,Smulson M E1,LeDoux S P1,Wilson G L1

Affiliation:

1. Department of Cellular Biology and Neuroscience, University of South Alabama, Mobile 36688, USA.

Abstract

This study was designed to test the hypothesis that poly(ADP-ribose) polymerase (PARP) plays a role in the repair of damage to mitochondrial DNA (mtDNA). A rat insulinoma cell line was transfected with a PARP antisense vector that was under the control of a dexamethasone promoter. Transfected cells were selected for stable integration of the antisense vector. Several cell lines containing the antisense vector were isolated. For these studies, one of these lines (clone 5) was chosen for further evaluation. When cells were treated with dexamethasone for 72 h, PARP activity was diminished by 60%. Western blot analysis revealed a concomitant reduction in PARP protein. When clone 5 cells were exposed to the simple methylating agent methylnitrosourea (MNU) without previous treatment with dexamethasone, repair of lesions in mtDNA was found to be similar to that seen in wild-type cells or in wild-type cells treated with dexamethasone. However, when clone 5 cells were pretreated with dexamethasone for 72 h, repair of MNU-induced damage was significantly inhibited. To ascertain whether the PARP activity that was inhibited by the antisense treatment was the same as that found in the nucleus, repair studies were performed on fibroblasts derived from PARP knockout mice and their normal wild-type controls. Attenuated repair was also seen in the cells in which the gene for PARP was inactivated. These are the first studies to demonstrate that PARP can facilitate the repair of simple alkylation damage to mtDNA.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3