Persistent Improvement of Type 2 Diabetes in the Goto-Kakizaki Rat Model by Expansion of the β-Cell Mass During the Prediabetic Period With Glucagon-Like Peptide-1 or Exendin-4

Author:

Tourrel Cécile12,Bailbe Danielle1,Lacorne Matthieu1,Meile Marie-Jo1,Kergoat Micheline2,Portha Bernard1

Affiliation:

1. LPPN, CNRS UMR 7059, Université Paris 7, Paris, France

2. MERCK-LIPHA, Chilly-Mazarin, France

Abstract

In the Goto-Kakizaki (GK) rat, a genetic model of type 2 diabetes, the neonatal β-cell mass deficit is considered to be the primary defect leading to basal hyperglycemia, which is detectable for the first time 3 weeks after birth. We investigated in GK females the short- and the long-term effects of a treatment with glucagon-like peptide-1 (GLP-1) or its long-acting analog exendin-4 (Ex-4) during the first postnatal week (during the prediabetic period). GK rats were treated with daily injections of glucagon-like peptide-1 (400 μg · kg−1 · day−1) or Ex-4 (3 μg · kg−1 · day−1) from day 2 to day 6 after birth and were evaluated against Wistar and untreated GK rats. Under these conditions, on day 7 both treatments enhanced pancreatic insulin content and total β-cell mass by stimulating β-cell neogenesis and regeneration. Follow-up of biological characteristics from day 7 to adult age (2 months) showed that such a GLP-1 or Ex-4 treatment exerted long-term favorable influences on β-cell mass and glycemic control at adult age. As compared to untreated GK rats, 2-month-old treated rats exhibited significantly decreased basal plasma glucose. Their glucose-stimulated insulin secretion, in vivo after intravenous glucose load or in vitro using isolated perfused pancreas, was slightly improved. This contributed at least partly to improve the in vivo plasma glucose disappearance rate, which was found to be increased in both treated GK groups compared to the untreated GK group. These findings in the GK model indicated, for the first time, that GLP-1 or Ex-4 treatment limited to the prediabetic period delays the installation and limits the severity of type 2 diabetes. Under these conditions, GLP-1 represents a unique tool because of its β-cell replenishing effect in spontaneously diabetic rodents. It may prove to be an invaluable agent for the prevention of human type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3