Kir6.2 Polymorphisms Sensitize β-Cell ATP-Sensitive Potassium Channels to Activation by Acyl CoAs

Author:

Riedel Michael J.1,Boora Parveen1,Steckley Diana1,de Vries Gerda2,Light Peter E.1

Affiliation:

1. Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada

2. Department of Mathematics and Statistics, University of Alberta, Edmonton, Alberta, Canada

Abstract

The commonly occurring E23K and I337V Kir6.2 polymorphisms in the ATP-sensitive potassium (KATP) channel are more frequent in Caucasian type 2 diabetic populations. However, the underlying cellular mechanisms contributing to the pathogenesis of type 2 diabetes remain uncharacterized. Chronic elevation of plasma free fatty acids observed in obese and type 2 diabetic subjects leads to cytosolic accumulation of long-chain acyl CoAs (LC-CoAs) in pancreatic β-cells. We postulated that the documented stimulatory effects of LC-CoAs on KATP channels might be enhanced in polymorphic KATP channels. Patch-clamp experiments were performed on inside-out patches containing recombinant KATP channels (Kir6.2/SUR1) to record macroscopic currents. KATP channels containing Kir6.2 (E23K/I337V) showed significantly increased activity in response to physiological palmitoyl-CoA concentrations (100–1,000 nmol/l) compared with wild-type KATP channels. At physiological intracellular ATP concentrations (mmol/l), E23K/I337V polymorphic KATP channels demonstrated significantly enhanced activity in response to palmitoyl-CoA. The observed increase in KATP channel activity may result in multiple defects in glucose homeostasis, including impaired insulin and glucagon-like peptide-1 secretion and increased glucagon release. In summary, these results suggest that the E23K/I337V polymorphism may have a diabetogenic effect via increased KATP channel activity in response to endogenous levels of LC-CoAs in tissues involved in the maintenance of glucose homeostasis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3