Impact of Two Common Polymorphisms in the PPARγ Gene on Glucose Tolerance and Plasma Insulin Profiles in Monozygotic and Dizygotic Twins

Author:

Poulsen Pernille1,Andersen Gitte2,Fenger Mogens3,Hansen Torben2,Echwald Søren M.2,Vølund Aage4,Beck-Nielsen Henning1,Pedersen Oluf2,Vaag Allan2

Affiliation:

1. Department of Endocrinology, Odense University Hospital, Odense C, Denmark

2. Steno Diabetes Center, Gentofte, Denmark

3. Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark

4. Novo Nordisk, Research and Development, Biostatistics, Bagsværd, Denmark

Abstract

The Pro12Ala polymorphism in the PPARγ2 gene has been associated with reduced risk of type 2 diabetes and insulin resistance. Recently, an association between dizygotic twinning and PPARγ gene polymorphisms has been proposed. We investigated the phenotypic appearance of the two polymorphisms (Pro12Ala and exon 6 C→T) in PPARγ among elderly twins (207 monozygotic [MZ] and 342 dizygotic [DZ]) and evaluated whether they could explain previously reported differences in plasma glucose and insulin profiles among MZ and DZ twins. We demonstrated a significant impact of the Pro12Ala polymorphism on glucose tolerance, diabetic status, homeostasis model assessment for insulin resistance, and plasma insulin profiles in twins. No impact of the silent exon 6 polymorphism on glucose homeostasis or plasma insulin profiles was found. Independent of the polymorphisms, we observed a significant impact of zygosity status per se on the plasma insulin profile after oral glucose ingestion, with the MZ twins being more hyperinsulinemic, indicating insulin resistance, than the DZ twins. Nonsignificantly higher glucose concentrations were observed among MZ compared with DZ twins. We demonstrated an association between the Ala allele and reduced risk of diabetes and insulin resistance in twins. However, the differences in metabolic profiles among MZ and DZ twins were not explained by differences in frequencies of the genetic variants and may be due to intrauterine environmental factors operating in twins independent of genotype. Accordingly, our study simultaneously supports a role for both the intrauterine environment (thrifty phenotype) and for genetics (thrifty genotype) in the etiology of insulin resistance and perhaps glucose intolerance in twins.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3