Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats.

Author:

Isshiki K1,Haneda M1,Koya D1,Maeda S1,Sugimoto T1,Kikkawa R1

Affiliation:

1. Third Department of Medicine, Shiga University of Medical Science, Otsu, Japan.

Abstract

Thiazolidinedione (TZD) compounds are widely used as oral hypoglycemic agents. Herein, we provide evidence showing that troglitazone, one of the TZD compounds, is able to prevent glomerular dysfunction in diabetic rats through a novel mechanism independent of its insulin-sensitizing action. We examined the effect of troglitazone on functional and biochemical parameters of glomeruli in streptozotocin-induced diabetic rats. Troglitazone was able to prevent not only diabetic glomerular hyperfiltration and albuminuria, but an increase in mRNA expression of extracellular matrix proteins and transforming growth factor-beta1 in glomeruli of diabetic rats, without changing blood glucose levels. Biochemically, an increase in diacylglycerol (DAG) contents and the activation of the protein kinase C (PKC)-extracellular signal-regulated kinase (ERK) pathway in glomeruli of diabetic rats were abrogated by troglitazone. The activation of DAG-PKC-ERK pathways in vitro in mesangial cells cultured under high glucose conditions was also inhibited by troglitazone. Troglitazone enhanced the activities of DAG kinase, which could metabolize DAG to phosphatidic acid, in both glomeruli of diabetic rats and mesangial cells cultured under high glucose conditions. Surprisingly, pioglitazone, another TZD compound without alpha-tocopherol moiety in its structure, also prevented the activation of the DAG-PKC pathway and activated DAG kinase in mesangial cells cultured under high glucose conditions. These results may identify the TZDs as possible new therapeutic agents for diabetic nephropathy that prevent glomerular dysfunction through the inhibition of the DAG-PKC-ERK pathway.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3