Affiliation:
1. Division of Endocrinology and Metabolism, University of Michigan, Ann Arbor 48109-0678, USA. stevensm@umich.edu
Abstract
Experimental diabetic peripheral neuropathy (DPN) is marked by impaired nerve conduction velocity (NCV), reduced nerve blood flow (NBF), and a variety of metabolic abnormalities in peripheral nerve that have been variously ascribed to hyperglycemia, abnormal fatty acid metabolism, ischemic hypoxia, and/or oxidative stress. Some investigators propose that NCV slowing in experimental DPN can be explained entirely on the basis of nerve energy depletion secondary to reduced NBF. This article reports highly selective effects of administration of the antioxidant DL-alpha-lipoic acid (LA) to streptozotocin-injected diabetic rats. LA improved digital sensory but not sciatic-tibial motor NCV, corrected endoneurial nutritive but not composite NBF, increased the mitochondrial oxidative state without correcting nerve energy depletion, and enhanced the accumulation of polyol pathway intermediates without worsening myo-inositol or taurine depletion. These studies implicate oxidative stress as an important pathophysiological factor in experimental DPN. They reveal complex interrelationships among nerve perfusion, energy metabolism, osmolyte content, conduction velocity, and oxidative stress that may reflect the heterogeneous and compartmentalized composition of peripheral nerve.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
314 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献