Reduction in Glucagon Receptor Expression by an Antisense Oligonucleotide Ameliorates Diabetic Syndrome in db/db Mice

Author:

Liang Yin1,Osborne Melville C.1,Monia Brett P.2,Bhanot Sanjay2,Gaarde William A.2,Reed Chantal2,She Pengxiang1,Jetton Thomas L.3,Demarest Keith T.1

Affiliation:

1. Endocrine Therapeutic and Metabolic Disorders, Johnson & Johnson Pharmaceutical Research & Development, Raritan, New Jersey

2. Department of Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California

3. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Vermont, Burlington, Vermont

Abstract

Excess glucagon levels contribute to the hyperglycemia associated with type 2 diabetes. Reducing glucagon receptor expression may thus ameliorate the consequences of hyperglucagonemia and improve blood glucose control in diabetic patients. This study describes the antidiabetic effects of a specific glucagon receptor antisense oligonucleotide (GR-ASO) in db/db mice. The ability of GR-ASOs to inhibit glucagon receptor mRNA expression was demonstrated in primary mouse hepatocytes by quantitative real-time RT-PCR. Intraperitoneal administration of GR-ASO at a dosage of 25 mg/kg twice a week in db/db mice for 3 weeks resulted in 1) decreased glucagon receptor mRNA expression in liver; 2) decreased glucagon-stimulated cAMP production in hepatocytes isolated from GR-ASO–treated db/db mice; 3) significantly reduced blood levels of glucose, triglyceride, and free fatty acids; 4) improved glucose tolerance; and 5) a diminished hyperglycemic response to glucagon challenge. Neither lean nor db/db mice treated with GR-ASO exhibited hypoglycemia. Suppression of GR expression was also associated with increased (∼10-fold) levels of plasma glucagon. No changes were observed in pancreatic islet cytoarchitecture, islet size, or α-cell number. However, α-cell glucagon levels were increased significantly. Our studies support the concept that antagonism of glucagon receptors could be an effective approach for controlling blood glucose in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3