Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group.

Author:

Lieth E1,Barber A J1,Xu B1,Dice C1,Ratz M J1,Tanase D1,Strother J M1

Affiliation:

1. Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey Medical Center, 17033, USA. lieth@psu.edu

Abstract

The early pathophysiology of diabetic retinopathy and the involvement of neural and vascular malfunction are poorly understood. Glial cells provide structural and metabolic support for retinal neurons and blood vessels, and the cells become reactive in certain injury states. We therefore used the streptozotocin rat model of short-term diabetic retinopathy to study glial reactivity and other glial functions in the retina in the first months after onset of diabetes. With a two-site enzyme-linked immunosorbent assay, we measured the expression of the intermediate filament glial fibrillary acidic protein (GFAP). After 1 month, GFAP was largely unchanged, but within 3 months of the beginning of diabetes, it was markedly induced, by fivefold (P < 0.04). Immunohistochemical staining showed that the GFAP induction occurred both in astrocytes and in Müller cells. Consistent with a glial cell malfunction, the ability of retinas to convert glutamate into glutamine, assayed chromatographically with an isotopic method, was reduced in diabetic rats to 65% of controls (P < 0.01). Furthermore, retinal glutamate, as determined by luminometry, increased by 1.6-fold (P < 0.04) after 3 months of diabetes. Taken together, these findings indicate that glial reactivity and altered glial glutamate metabolism are early pathogenic events that may lead to elevated retinal glutamate during diabetes. These data are the first demonstration of a specific defect in glial cell metabolism in the retina during diabetes. These findings suggest a novel understanding of the mechanism of neural degeneration in the retina during diabetes, involving early and possibly persistent glutamate excitotoxicity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 415 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3