Inhibitory Effects of Antipsychotics on Carbachol-Enhanced Insulin Secretion From Perifused Rat Islets

Author:

Johnson David E.1,Yamazaki Hanae2,Ward Karen M.1,Schmidt Anne W.1,Lebel Wesley S.3,Treadway Judith L.4,Gibbs E. Michael4,Zawalich Walter S.2,Rollema Hans1

Affiliation:

1. Department of Neuroscience, Pfizer Global Research and Development, Groton, Connecticut

2. Yale School of Nursing, Yale University, New Haven, Connecticut

3. Department of General Pharmacology, Pfizer Global Research and Development, Groton, Connecticut

4. Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research and Development, Groton, Connecticut

Abstract

Treatment with the atypical antipsychotics olanzapine and clozapine has been associated with an increased risk for deterioration of glucose homeostasis, leading to hyperglycemia, ketoacidosis, and diabetes, in some cases independent of weight gain. Because these events may be a consequence of their ability to directly alter insulin secretion from pancreatic β-cells, we determined the effects of several antipsychotics on cholinergic- and glucose-stimulated insulin secretion from isolated rat islets. At concentrations encompassing therapeutically relevant levels, olanzapine and clozapine reduced insulin secretion stimulated by 10 μmol/l carbachol plus 7 mmol/l glucose. This inhibition of insulin secretion was paralleled by significant reductions in carbachol-potentiated inositol phosphate accumulation. In contrast, risperidone or ziprasidone had no adverse effect on cholinergic-induced insulin secretion or inositol phosphate accumulation. None of the compounds tested impaired the islet secretory responses to 8 mmol/l glucose alone. Finally, in vitro binding and functional data show that olanzapine and clozapine (unlike risperidone, ziprasidone, and haloperidol) are potent muscarinic M3 antagonists. These findings demonstrate that low concentrations of olanzapine and clozapine can markedly and selectively impair cholinergic-stimulated insulin secretion by blocking muscarinic M3 receptors, which could be one of the contributing factors to their higher risk for producing hyperglycemia and diabetes in humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3