Reduced Insulin and IGF-I Signaling, not Hyperglycemia, Underlies the Diabetes-Associated Depletion of Interstitial Cells of Cajal in the Murine Stomach

Author:

Horváth Viktor J.1,Vittal Harsha12,Ördög Tamás1

Affiliation:

1. Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada

2. Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada

Abstract

Damage to interstitial cells of Cajal (ICC), pacemakers, and mediators of neuromuscular neurotransmission in the gastrointestinal tract contributes to the pathogenesis of diabetic gastroenteropathy in both patients and animal models. ICC depletion in diabetes may result from chronic hyperglycemia or lost/ineffective insulin signaling. Because independent control of insulin and glucose concentrations is difficult in chronic in vivo studies, we used long-term organotypic cultures to address this problem. Murine gastric muscles were cultured in normoglycemic or hyperglycemic basal media with or without insulin or IGF-I for 1–3 months, the time required for gastroparesis and ICC damage to develop in diabetic mice. ICC were assessed by c-Kit immunohistochemistry and quantitative analysis of c-kit expression. Electrical pacemaking was studied by intracellular recording of slow waves. ICC survived for at least 34 days in unsupplemented normoglycemic media, but their networks, c-kit expression, and slow waves were profoundly reduced after 68 days. These changes could be entirely prevented by insulin or IGF-I supplementation. ICC networks were completely resistant to hyperglycemia for at least 72 days. Thus, hyperglycemia is unlikely to be responsible for the diabetes-associated depletion of ICC. In contrast, maintenance of ICC requires insulin or IGF-I, which are reduced or ineffective in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3