Mitogen-Activated Protein Kinase p38 Mediates Reduced Nerve Conduction Velocity in Experimental Diabetic Neuropathy

Author:

Price Sally A.1,Agthong Sithiporn1,Middlemas Alicia B.1,Tomlinson David R.1

Affiliation:

1. From the Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, U.K

Abstract

This study examined the role of p38 mitogen-activated protein (MAP) kinase in transducing high glucose into deficits in nerve conduction velocity (NCV) that are characteristic of diabetic neuropathy. p38 activation and NCV were measured in streptozocin-induced diabetic rats treated with a p38 inhibitor, an aldose reductase inhibitor, and insulin. Dorsal root ganglia (DRG) from diabetic animals showed marked activation of p38 at 12 weeks of diabetes. Insulin treatment for the last 4 of 12 weeks of diabetes normalized p38 activation. Furthermore, activation was completely prevented by 12 weeks’ treatment with the aldose reductase inhibitor, fidarestat. Immunocytochemistry localized activation of p38 to the nuclei of virtually all sensory neuronal phenotypes in the DRG, and activation was clear in diabetes, as was inhibition by fidarestat and by the p38 inhibitor SB 239063. In the ventral horn of the spinal cord, p38 was present in motoneuron cell bodies; and again, activation in diabetes and fidarestat inhibition was clear. Treatment of diabetic animals with a specific inhibitor of p38 (SB 239063), fidarestat, or insulin also prevented reductions in both motor and sensory NCV. These findings suggest that increased polyol pathway flux in diabetic animals leads to the activation of p38. This activation can mediate changes in gene transcription and cellular phenotype that are likely to underlie the NCV deficits. Insulin and aldose reductase inhibitors can prevent excess polyol pathway flux, and hence these agents may prevent NCV deficits by preventing p38 MAP kinase activation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3