Increased Fatty Acid Desaturation and Enhanced Expression of Stearoyl Coenzyme A Desaturase Protects Pancreatic β-Cells from Lipoapoptosis

Author:

Busch Anna K.1,Gurisik Ebru1,Cordery Damien V.1,Sudlow Michelle1,Denyer Gareth S.2,Laybutt D. Ross1,Hughes William E.1,Biden Trevor J.1

Affiliation:

1. Garvan Institute of Medical Research, St. Vincent’s Hospital, Sydney, Australia

2. Department of Biochemistry, University of Sydney, Sydney, Australia

Abstract

Increased availability of fatty acids causes cell death and dysfunction in β-cell lines, isolated islets, and animal models of diabetes. From the MIN6 β-cell line, we selected two subpools that are resistant to palmitate-induced apoptosis. Protection was not universal because palmitate-resistant cells remained sensitive to cytokine- and streptozotocin-induced apoptosis. Palmitate oxidation and incorporation into cholesterol ester (but not triglycerides) were significantly higher in palmitate-resistant cells than in control cells. Consistent with these findings, transcript profiling revealed increased expression in palmitate-resistant cells of several β-oxidation genes as well as a 2.8-fold upregulation of stearoyl-CoA desaturase 1 (SCD1). Correspondingly, the oleate-to-palmitate ratio of palmitate-resistant cells was double that of palmitate-pretreated control cells. At least some of this additional oleate in palmitate-resistant cells was incorporated into cholesterol ester stored in the form of large cytosolic lipid bodies. However, blocking cholesterol ester formation did not render palmitate-resistant cells sensitive to palmitate-induced apoptosis. On the other hand, an inhibitor of SCD1, 10,12-conjugated linoleic acid, dose dependently overcame the resistance of palmitate-resistant cells to lipoapoptosis. Our results suggest that desaturation per se is more important in protecting β-cells from the cytotoxic effects of palmitate than is the nature of neutral lipid storage pool thus generated.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3