Significance of glutathione-dependent antioxidant system in diabetes-induced embryonic malformations.

Author:

Sakamaki H1,Akazawa S1,Ishibashi M1,Izumino K1,Takino H1,Yamasaki H1,Yamaguchi Y1,Goto S1,Urata Y1,Kondo T1,Nagataki S1

Affiliation:

1. First Department of Internal Medicine, Atomic Disease Institute, Nagasaki University School of Medicine, Japan.

Abstract

Hyperglycemia-induced embryonic malformations may be due to an increase in radical formation and depletion of intracellular glutathione (GSH) in embryonic tissues. In the past, we have investigated the role of the glutathione-dependent antioxidant system and GSH on diabetes-related embryonic malformations. Embryos from streptozotocin-induced diabetic rats on gestational day 11 showed a significantly higher frequency of embryonic malformations (neural lesions 21.5 vs. 2.8%, P<0.001; nonneural lesions 47.4 vs. 6.4%, P<0.001) and growth retardation than those of normal mothers. The formation of intracellular reactive oxygen species (ROS), estimated by flow cytometry, was increased in isolated embryonic cells of diabetic rats on gestational day 11. The concentration of intracellular GSH in embryonic tissues of diabetic pregnant rats on day 11 was significantly lower than that of normal rats. The activity of y-glutamylcysteine synthetase (gamma-GCS), the rate-limiting GSH synthesizing enzyme, in embryos of diabetic rats was significantly low, associated with reduced expression of gamma-GCS mRNA. Administration of buthionine sulfoxamine (BSO), a specific inhibitor of gamma-GCS, to diabetic rats during the period of maximal teratogenic susceptibility (days 6-11 of gestation) reduced GSH by 46.7% and increased the frequency of neural lesions (62.1 vs. 21.5%, P<0.01) and nonneural lesions (79.3 vs. 47.4%, P<0.01). Administration of GSH ester to diabetic rats restored GSH concentration in the embryos and reduced the formation of ROS, leading to normalization of neural lesions (1.9 vs. 21.5%) and improvement in nonneural lesions (26.7 vs. 47.4%) and growth retardation. Administration of insulin in another group of pregnant rats during the same period resulted in complete normalization of neural lesions (4.3 vs. 21.5%), nonneural lesions (4.3 vs. 47.4%), and growth retardation with the restoration of GSH contents. Our results indicate that GSH depletion and impaired responsiveness of GSH-synthesizing enzyme to oxidative stress during organogenesis may have important roles in the development of embryonic malformations in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3