Decreased Glibenclamide Uptake in Hepatocytes of Hepatocyte Nuclear Factor-1α-Deficient Mice
Author:
Boileau Pascal1, Wolfrum Christian1, Shih David Q.1, Yang Tien-An1, Wolkoff Allan W.2, Stoffel Markus1
Affiliation:
1. Laboratory of Metabolic Diseases, the Rockefeller University, New York, New York 2. Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
Abstract
Diabetes in subjects with hepatocyte nuclear factor (HNF)-1α gene mutations (maturity-onset diabetes of the young [MODY]-3) is characterized by impaired insulin secretion. Surprisingly, MODY3 patients exhibit hypersensitivity to the hypoglycemic actions of sulfonylurea therapy. To study the pharmacogenetic mechanism(s), we have investigated glibenclamide-induced insulin secretion, glibenclamide clearance from the blood, and glibenclamide metabolism in wild-type and Hnf-1α-deficient mice. We show that despite a profound defect in glucose-stimulated insulin secretion, diabetic Hnf-1α−/− mice have a robust glibenclamide-induced insulin secretory response. We demonstrate that the half-life (t1/2) of glibenclamide in the blood is increased in Hnf-1α−/− mice compared with wild-type littermates (3.9 ± 1.3 vs. 1.5 ± 1.8 min, P ≤ 0.05). The clearance of glibenclamide from the blood during the first hours after intravenous administration was reduced approximately fourfold in Hnf-1α−/− mice compared with Hnf-1α+/+ littermates. Glibenclamide uptake into hepatocytes was dramatically decreased in vivo and in vitro. To study the metabolism of glibenclamide in Hnf-1α−/− animals, we analyzed liver extracts from [3H]glibenclamide-injected animals by reverse-phase chromatography. We found that the ratio of the concentrations of glibenclamide and its metabolites was moderately increased in livers of Hnf-1α−/− mice, suggesting that hepatic glibenclamide metabolism was not impaired in animals with Hnf-1α deficiency. Our data demonstrate that high serum glibenclamide concentrations and an increased t1/2 of glibenclamide in the blood of Hnf-1α−/− mice are caused by a defect in hepatic uptake of glibenclamide. This suggests that hypersensitivity to sulfonylureas in MODY3 patients may be due to impaired hepatic clearance and elevated plasma concentrations of the drug.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference26 articles.
1. Yamagata K, Oda N, Kaisaki PJ, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI: Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young. Nature 384:455–458,1996 2. Byrne MM, Sturis J, Menzel S, Yamagata Y, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS: Altered insulin secretory response to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 46:1503–1511,1996 3. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M: Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84:575–585,1996 4. Lee YH, Sauer B, Gonzalez FJ: Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1alpha knockout mouse. Mol Cell Biol 18:3059–3068,1998 5. Dukes ID, Sreenan S, Roe MW, Levisetti M, Zhou YP, Ostrega D, Bell GI, Pontoglio M, Yaniv M, Philipson L, Polonsky KS: Defective pancreatic beta-cell glycolytic signaling in hepatocyte nuclear factor-1alpha-deficient mice. J Biol Chem 273:24457–24464,1998
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|