Decreased Glibenclamide Uptake in Hepatocytes of Hepatocyte Nuclear Factor-1α-Deficient Mice

Author:

Boileau Pascal1,Wolfrum Christian1,Shih David Q.1,Yang Tien-An1,Wolkoff Allan W.2,Stoffel Markus1

Affiliation:

1. Laboratory of Metabolic Diseases, the Rockefeller University, New York, New York

2. Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York

Abstract

Diabetes in subjects with hepatocyte nuclear factor (HNF)-1α gene mutations (maturity-onset diabetes of the young [MODY]-3) is characterized by impaired insulin secretion. Surprisingly, MODY3 patients exhibit hypersensitivity to the hypoglycemic actions of sulfonylurea therapy. To study the pharmacogenetic mechanism(s), we have investigated glibenclamide-induced insulin secretion, glibenclamide clearance from the blood, and glibenclamide metabolism in wild-type and Hnf-1α-deficient mice. We show that despite a profound defect in glucose-stimulated insulin secretion, diabetic Hnf-1α−/− mice have a robust glibenclamide-induced insulin secretory response. We demonstrate that the half-life (t1/2) of glibenclamide in the blood is increased in Hnf-1α−/− mice compared with wild-type littermates (3.9 ± 1.3 vs. 1.5 ± 1.8 min, P ≤ 0.05). The clearance of glibenclamide from the blood during the first hours after intravenous administration was reduced approximately fourfold in Hnf-1α−/− mice compared with Hnf-1α+/+ littermates. Glibenclamide uptake into hepatocytes was dramatically decreased in vivo and in vitro. To study the metabolism of glibenclamide in Hnf-1α−/− animals, we analyzed liver extracts from [3H]glibenclamide-injected animals by reverse-phase chromatography. We found that the ratio of the concentrations of glibenclamide and its metabolites was moderately increased in livers of Hnf-1α−/− mice, suggesting that hepatic glibenclamide metabolism was not impaired in animals with Hnf-1α deficiency. Our data demonstrate that high serum glibenclamide concentrations and an increased t1/2 of glibenclamide in the blood of Hnf-1α−/− mice are caused by a defect in hepatic uptake of glibenclamide. This suggests that hypersensitivity to sulfonylureas in MODY3 patients may be due to impaired hepatic clearance and elevated plasma concentrations of the drug.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3