Altered β-Cell Distribution of pdx-1 and GLUT-2 After a Short-Term Challenge With a High-Fat Diet in C57BL/6J Mice

Author:

Reimer Martina Kvist1,Ahrén Bo1

Affiliation:

1. From the Department of Medicine, Lund University, Lund, Sweden

Abstract

Mechanisms involved in the islet adaptation to insulin resistance were examined in mice of the C57BL/6J strain challenged with a high-fat (58%) diet for 8 weeks. Basal hyperglycemia commenced after 1 week, whereas hyperinsulinemia evolved after 8 weeks. Glucose elimination after an intravenous glucose challenge (1 g/kg) was significantly delayed after 1, 4, and 8 weeks on the high-fat diet compared with normal-diet–fed mice. This result was associated with unchanged insulin responses. However, glucose-stimulated insulin secretion from isolated islets was increased in a compensatory fashion at all glucose levels over a wide range (3.3–22 mmol/l) after 8 weeks on the high-fat diet, whereas no compensatory hypersecretion of insulin was evident after 1 or 4 weeks, except at 22 mmol/l glucose. Immunohistochemistry revealed that the islet architecture of insulin and glucagon cells remained intact in islets from mice fed a high-fat diet. However, the nuclear translocation of the homeobox transcription factor, pdx-1, and the plasma membrane translocation of GLUT2 were both impaired in high-fat–fed animals after 1 week. In contrast, the expression of the full-length leptin receptor (ObRb) was not affected by high-fat feeding. The study thus shows that 8 weeks are required for the development of a compensatory hypersecretion of insulin after high-fat feeding in mice, and even then the in vivo insulin secretion is insufficient to normalize impaired glucose tolerance. The early-onset islet dysfunction is accompanied by impaired β-cell trafficking of two factors, pdx-1 and GLUT-2, which are involved in β-cell proliferation and glucose recognition. The mechanisms compromising this β-cell trafficking remain to be established.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3