Glutaminolysis and Insulin Secretion

Author:

Kelly Andrea1,Li Changhong1,Gao Zhiyong2,Stanley Charles A.1,Matschinsky Franz M.3

Affiliation:

1. Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

2. Department of Pathology, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

3. Department of Biochemistry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

Abstract

Identification of regulatory mutations of glutamate dehydrogenase (GDH) in a form of congenital hyperinsulinism (GDH-HI) is providing a model for basal insulin secretion (IS) and amino acid (AA)-stimulated insulin secretion (AASIS) in which glutaminolysis plays a key role. Leucine and ADP are activators and GTP is an inhibitor of GDH. GDH-HI mutations impair GDH sensitivity to GTP inhibition, leading to fasting hypoglycemia, leucine hypersensitivity, and protein-induced hypoglycemia, indicating the importance of GDH in basal secretion and AASIS. The proposed model for glutaminolysis in IS is based on GDH providing NADH and α-ketoglutarate (α-KG) to the Krebs cycle, hence increasing the β-cell ATP-to-ADP ratio to effect insulin release. The process operates with 1) sufficient lowering of β-cell phosphate potential (i.e., fasting) and when 2) AAs provide leucine for allosteric activation and glutamate from transaminations. To test this hypothesis, IS studies were performed in rat and GDH-HI mouse models. In the rat study, rat islets were isolated, cultured, and then perifused in Krebs-Ringer bicarbonate buffer with 2 mmol/l glutamine using 10 mmol/l 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid (BCH) or a BCH ramp after 50 or 120 min of glucose deprivation. In the GDH-HI mouse study, the H454Y GDH-HI mutation driven by the rat insulin promoter was created for H454Y β-cell-specific expression. Cultured, isolated islets were perifused in leucine 0–10 mmol/l with 2 mmol/l glutamine 0–25 mmol/l, AA 0–10 mmol/l, or glucose 0–25 mmol/l. Rat islets displayed enhanced BCH-stimulated IS after 120 min of glucose deprivation, but not when energized by fuel. H454Y and control islets had similar glucose-stimulated IS, but H454Y mice had lower random blood glucose. Leucine-stimulated IS and AASIS occurred at lower thresholds and were greater in H454Y versus control islets. Glutamine stimulated IS in H454Y but not control islets. The clinical manifestations of GDH-HI and related animal studies suggest that GDH regulates basal IS and AASIS. Energy deprivation enhanced GDH-mediated IS, and H454Y mice were hypoglycemic, substantiating roles for GDH and its regulation by the phosphate potential in basal IS. Excessive IS from H454Y islets upon exposure to GDH substrates or stimuli indicate that regulation of GDH by the β-cell phosphate potential plays a critical role in AASIS. These findings provide a foundation for defining pathways of basal secretion and AASIS, augmenting our understanding of β-cell function.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3