Diabetes Due to a Progressive Defect in β-Cell Mass in Rats Transgenic for Human Islet Amyloid Polypeptide (HIP Rat)

Author:

Butler Alexandra E.1,Jang Jennifer1,Gurlo Tatyana1,Carty Maynard D.2,Soeller Walter C.2,Butler Peter C.1

Affiliation:

1. Larry Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California

2. Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut

Abstract

The islet in type 2 diabetes is characterized by a deficit in β-cell mass, increased β-cell apoptosis, and impaired insulin secretion. Also, islets in type 2 diabetes often contain deposits of islet amyloid derived from islet amyloid polypeptide (IAPP), a 37–amino acid protein cosecreted with insulin by β-cells. Several lines of evidence suggest that proteins with a capacity to develop amyloid fibrils may also form small toxic oligomers that can initiate apoptosis. The amino acid sequence of IAPP in rats and mice is identical and differs from that in humans by substitution of proline residues in the amyloidogenic sequence so that the protein no longer forms amyloid fibrils or is cytotoxic. In the present study, we report a novel rat model for type 2 diabetes: rats transgenic for human IAPP (the HIP rat). HIP rats develop diabetes between 5 and 10 months of age, characterized by an ∼60% deficit in β-cell mass that is due to an increased frequency of β-cell apoptosis. HIP rats develop islet amyloid, but the extent of amyloid was not related to the frequency of β-cell apoptosis (r = 0.10, P = 0.65), whereas the fasting blood glucose was (r = 0.77, P < 0.001). The frequency of β-cell apoptosis was related to the frequency of β-cell replication (r = 0.97, P < 0.001) in support of the hypothesis that replicating cells are more vulnerable to apoptosis than nondividing cells. The HIP rat provides additional evidence in support of the potential role of IAPP oligomer formation toward the increased frequency of apoptosis in type 2 diabetes, a process that appears to be compounded by glucose toxicity when hyperglycemia supervenes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3