Hypothalamic neuronal histamine as a target of leptin in feeding behavior.

Author:

Yoshimatsu H1,Itateyama E1,Kondou S1,Tajima D1,Himeno K1,Hidaka S1,Kurokawa M1,Sakata T1

Affiliation:

1. Department of Internal Medicine I, School of Medicine, Oita Medical University, Hasama, Japan.

Abstract

Leptin, an ob gene product, has been shown to suppress food intake by regulating hypothalamic neuromodulators. The present study was designed to examine the involvement of brain histamine in leptin-induced feeding suppression. A bolus infusion of 1.0 microg leptin into the rat third cerebroventricle (i3vt) elevated the turnover rate of hypothalamic neuronal histamine (P < 0.05) as assessed by pargyline-induced accumulation of tele-methylhistamine (t-MH), a major metabolite of histamine. No remarkable change in the mRNA expression of histidine decarboxylase (HDC), a histamine-synthesizing enzyme, was observed in the hypothalamus after i3vt infusion of leptin. These results indicate that leptin increases histamine turnover by affecting the posttranscriptional process of HDC formation or histamine release per se. As expected, concomitant suppression in 24-h cumulative food intake was also observed after infusion of leptin. Systemic depletion of brain histamine levels by pretreatment with an intraperitoneal injection of 224 micromol/kg alpha-fluoromethylhistidine (FMH), a suicide inhibitor of HDC, attenuated the leptin-induced feeding suppression by 50.7% (P < 0.05). This attenuation of feeding suppression was mimicked by the i3vt infusion of 2.24 micromol/kg FMH before leptin treatment (P < 0.05). In addition, concentrations of hypothalamic histamine and t-MH were lowered in diabetic (db/db) mice, which are known to be deficient in leptin receptors (P < 0.05 vs. lean littermates for each amine), although the amine levels were higher in diet-induced obese rats (P < 0.05 for each amine). Leptin-deficient obese mice (ob/ob) showed lower histamine turnover (P < 0.05 vs. lean littermates), which recovered after leptin infusion. Thus, a growing body of results points to an important role for the hypothalamic histamine neurons in the central regulation of feeding behavior controlled by leptin.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3