Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion.

Author:

Nagamatsu S1,Nakamichi Y1,Yamamura C1,Matsushima S1,Watanabe T1,Ozawa S1,Furukawa H1,Ishida H1

Affiliation:

1. Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan. shinya@kyorin-u.ac.jp

Abstract

The physiological role of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins in insulin exocytosis has been reported in pancreatic beta-cells. To determine whether the beta-cells of GK rats, a nonobese rodent model of type 2 diabetes, exhibit abnormalities in their SNARE proteins, we studied the expression and function of target (t)-SNAREs, syntaxin 1A, and synaptosomal-associated protein of 25 kDa (SNAP-25) in GK rat islets. Although insulin release and insulin content of islets isolated from 12-week-old GK rats were reduced, the proinsulin biosynthetic rate was about twofold higher than that in control rat islets, and no change in the preproinsulin mRNA level was observed. Pulse-chase experiments suggested the increased degradation of insulin in GK rat islets. Immunoblot analysis revealed that protein levels of syntaxin 1A and SNAP-25 in GK rat islets decreased to approximately 60% of the levels in control rat islets. We then examined whether the restoration of the decreased expression of t-SNAREs to the normal level in GK rat islets affected insulin secretion. Restoration was achieved by the overexpression of syntaxin 1A and SNAP-25 via the recombinant adenovirus-mediated gene transduction system, which recovered levels of these proteins to almost control levels. Glucose-stimulated insulin release from AdexlCA syntaxin 1A and Adex1CA SNAP-25-infected GK rat islets increased up to approximately 135 and 200%, respectively, of those from uninfected GK rat islets, although no difference in basal (2.2 mmol/l glucose) insulin release was evident between them. We conclude that decreased expression of t-SNAREs in GK rat islets is in part the defect responsible for impaired insulin secretion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3