Albumin Binding of Acylated Insulin (NN304) Does Not Deter Action to Stimulate Glucose Uptake

Author:

Dea Melvin K.1,Hamilton-Wessler Marianthe1,Ader Marilyn1,Moore Donna1,Schäffer Lauge2,Loftager Mette2,Vølund Aage2,Bergman Richard N.1

Affiliation:

1. Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles, California

2. Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark

Abstract

NN304 [LysB29-tetradecanoyl des(B30) human insulin] is a potentially therapeutic insulin analog designed to exhibit protracted glucose-lowering action. In dogs with infusion rates similar to insulin itself, NN304 exhibits similar glucose uptake (Rd) stimulation with delayed onset of action. This compartmental modeling study was to determine if NN304 action could be accounted for by the ∼2% unbound NN304 concentration. NN304 (or human insulin) (n = 6 each) was infused at 10.2 pmol · min−1 · kg−1 under euglycemic clamp conditions in anesthetized dogs. NN304 appearance in lymph, representing interstitial fluid (ISF), was slow compared with insulin (t1/2 = 70 ± 7 vs. 14 ± 1 min, P < 0.001). Rd was highly correlated with the ISF concentration for insulin and NN304 (r = 0.86 and 0.93, respectively), suggesting that slow transendothelial transport (TET) is responsible for sluggish NN304 action. Insulin and NN304 concentration data were fit to a two-compartment (plasma and ISF) model. NN304 plasma elimination and TET were reduced to 10 and 7% of insulin, respectively. Thus, there was reduction of NN304 transport, but not to the degree expected. In ISF, there was no reduction in NN304 elimination. Thus, this acylated insulin analog demonstrates blunted kinetics in plasma, and full efficacy in the compartment of action, ISF.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3