Endothelial Differentiation Gene Receptors in Pancreatic Islets and INS-1 Cells

Author:

Laychock Suzanne G.1,Tian Yingrao1,Sessanna Shawn M.1

Affiliation:

1. From the Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, the State University of New York at Buffalo, Buffalo, New York

Abstract

The endothelial differentiation gene (EDG) receptors are a class of G protein-coupled receptors. EDG-1, -3, -5, -6, and -8 bind the bioactive lipid sphingosine-1-phosphate (SPP) as the primary signaling ligand. EDG-2, -4, and -7 bind the ligand lysophosphatidic acid. EDG-1, -2, -3, -5, -6, and -7, but not -8, mRNAs were expressed in isolated rat pancreatic islets, whereas INS-1 insulinoma cells expressed only EDG-1, -2, -3, and -5 mRNAs. EDG-4 mRNA was expressed in mouse islets. EDG-1 mRNA but not EDG-3 mRNA was rapidly induced relative to 18S rRNA after stimulation of isolated islets with phorbol 12-myristate 13-acetate (PMA) or cholecystokinin-8S for 2 h. The protein kinase C inhibitor GF 109203X blocked the EDG-1 induction by PMA. Similarly, in islets stimulated for 2 h with 17 mmol/l glucose, the relative EDG-1 mRNA levels increased almost twofold compared with levels in control islets at 5.5 mmol/l glucose. In contrast, after 11 mmol/l glucose stimulation for 7 days, the relative levels of rat islet EDG-1 mRNA were significantly reduced to 54% below that of islets cultured at 5.5 mmol/l glucose. There was no change in relative EDG-3 mRNA levels. Stimulation of EDG receptors in islets and INS-1 cells with SPP inhibited glucagon-like peptide 1 (GLP-1)-stimulated cAMP production and insulin secretion in a concentration-dependent manner. Pertussis toxin antagonized the SPP effects on insulin release. Thus, EDG receptors are expressed in pancreatic islet β-cells and Gi seems to mediate the inhibition by SPP of adenylyl cyclase and cAMP formation and inhibition of the stimulation of insulin secretion by GLP-1.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3